Radiographic Training—Level 2

Course Outline

1. Introduction
 * NDT Introduction
 * Facility Tour & Method Demonstrations
 * Mathematics Review

Part 1 -- Basic Method Review

2. Radiation Origin & History
 * Basic Structure of Matter
 * Radiation Characteristics
 * Ionization/Scatter
 * Origin and Types of Radiation
 * Radiation Discovery and Historical Events
 * Industrial Radiography Beginnings

3. Radiation Safety
 * Radiation/Interactions and Origin Review
 * Units of Radiation Measurement
 * Radiological and Biological Effects
 * Exposure Reductions/ALARA
 * Requirements and Regulations
 * Emergency Response/Employee Notifications
 * Personnel Training and Qualifications/Records/Administration

4. Basic CP X-ray Systems & Subsystems
 * Tube Head
 * High Voltage Generators
 * Control Panel
 * Cooler
 * High Voltage Cables
 * Radiation Enclosures
5. Special Radiation Generating Systems
 * High Energy X-Ray (Linear Accelerators, Betatron, Van De Graaf Generators)
 * Portable X-Ray Systems
 * Mini Focus X-Ray Systems
 * Micro-Focus X-Ray Systems
 * Gamma Radiography
 * Rod Anode
 * Neutron Radiography

6. Imaging Modalities
 * Film Radiography
 * Computed Radiography (CR)
 * Digital Radiography (DR)
 * Radioscopy/Real Time Imaging
 * Computed Tomography (CT)
 * Other Imaging Methods

7. Automatic Film Processing
 * Operational Overview
 * Film Systems
 * Darkroom Operations
 * Chemistry Systems
 * Mechanical Systems
 * Controlling Factors/Common Malfunctions
 * Discharge Considerations
 * Maintenance

8. Radiographic Quality Process Variables
 * Test Specimen Coverage
 * Exposure Parameters
 * Geometric & Spatial Relationships
 * Radiographic Density
 * Image Quality
 * Scatter Control
 * Radiographic Identification
 * Radiographic Technique
 * Students Choose a Test Specimen & Fully Develop an RT Technique(s) IAW/XRI 4004 /ASTM E 1742
 * Student Will Develop “CR” Technique for Comparison of Parameters & Imaging Quality Results

10. Procedures & Specifications – History & Applications
 * ASTM E-1742 Full Review & Discussion – Open Book Quiz
 * Full Review & Discussion, Demonstrations of Process
 * Controls, Verifications & Calibrations – Review
 * Comprehensive Review Of Unique Customer Requirements

11. Material Processes Training
 * Materials & Processes – Product Forms & Applications
 o Inherent Discontinuities
 • Ingots
 • Castings
 o Processing Discontinuities
 • Primary
 • Secondary
 o In Service Discontinuities
 • Fatigue
 • Corrosion
 • Erosion

Part 2 -- Radiography for the Level 2

12. Radiographic Interpretation
 * The Radiographic Viewing Area
 * Radiographic Viewing Tools & Accessories
 * Radiographic Illuminators
 * Radiograph Indications To Discontinuity Disposition
 * Welding Radiographic Interpretation
 * Casting Radiographic Interpretation
13. Specifications Idiosyncrasy
 * A Direct Comparison & Discussion of ASTM E-1742 and the Prime Aerospace Radiographic Inspection Process Specifications & ASTM E-2104
 - GE – P3TF5
 - P&W XRM Master & Codes
 - Rolls Royce RPS 704
 - Boeing BSS 7041
 - ASTM E 2104
 * NADCAP AS7114 Review and Discussion

14. ASTM Reference Radiographs
 * A Review of Reference Radiographs: Application and Significance (Primary Focus On):
 - ASTM E-155
 - ASTM E-192
 - ASTM E-446
 - ASTM E-1320

15. Special Process Presentations
 * Titanium Radiographic Interpretation
 * Superalloy Radiographic Interpretation

16. Interpretation Exercises
 * Student Identifies Indications, Discontinuities and Gauges Radiographic Quality on Select Groups of Images
 - Titanium Casting Radiographs
 - Ferrous Casting Radiographs
 - Aluminum Casting Radiographs
 - Super Alloy Casting Radiographs
 - Aerospace Weldment Radiographs
 - Miscellaneous Weldment Radiographs
 - Miscellaneous Radiographs Package